A new numerical method by revised measure theory for solving the nonlinear initial value problems

نویسندگان

  • Sohrab Effati
  • M. Hoseini
  • Alireza Nazemi
چکیده

In this paper, we introduce a new technique to find the approximate solution of a nonlinear initial value problem (IVP). By introducing an artificial zero cost function and a linear functional, the problem is modified into one consisting of the minimization of a positive linear functional over a set of Radon measures. Then we obtain an optimal measure which is approximated by a finite combination of atomic measures, and by using atomic measures we change this one to an finite dimensional linear programming problem. Finally we find the approximated trajectory functions. Some examples are given show the procedure. 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The symmetric two-step P-stable nonlinear predictor-corrector‎ ‎methods for the numerical solution of second order‎ ‎initial value problems

In this paper‎, ‎we propose a modification of the second order method‎ ‎introduced in [‎‎Q. Li and ‎X‎. ‎Y. ‎Wu‎, A two-step explicit $P$-stable method for solving second order initial value problems‎, ‎textit{‎Appl‎. ‎Math‎. ‎Comput‎.}‎ {‎138}‎ (2003)‎, no. 2-3, ‎435--442‎] for the numerical solution of‎ ‎IVPs for second order ODEs‎. ‎The numerical results obtained by the‎ ‎new method for some...

متن کامل

A Third-degree B-spline Collocation Scheme for Solving a Class of the Nonlinear Lane–-Emden Type Equations

In this paper, we use a numerical method involving collocation method with third B-splines as basis functions for solving a class of singular initial value problems (IVPs) of Lane--Emden type equation. The original differential equation is modified at the point of singularity. The modified problem is then treated by using B-spline approximation. In the case of non-linear problems, we first line...

متن کامل

SOLVING SINGULAR ODES IN UNBOUNDED DOMAINS WITH SINC-COLLOCATION METHOD

Spectral approximations for ODEs in unbounded domains have only received limited attention. In many applicable problems, singular initial value problems arise. In solving these problems, most of numerical methods have difficulties and often could not pass the singular point successfully. In this paper, we apply the sinc-collocation method for solving singular initial value problems. The ability...

متن کامل

Nonstandard explicit third-order Runge-Kutta method with positivity property

When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...

متن کامل

A Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative

The theory of derivatives and integrals of fractional in fractional calculus have found enormousapplications in mathematics, physics and engineering so for that reason we need an efficient and accurate computational method for the solution of fractional differential equations. This paper presents a numerical method for solving a class of linear and nonlinear multi-order fractional differential ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 186  شماره 

صفحات  -

تاریخ انتشار 2007